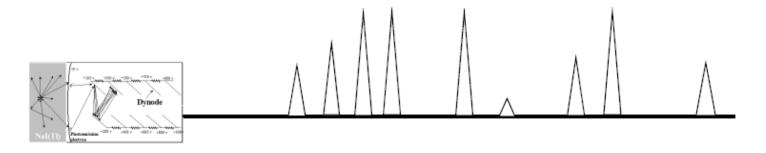
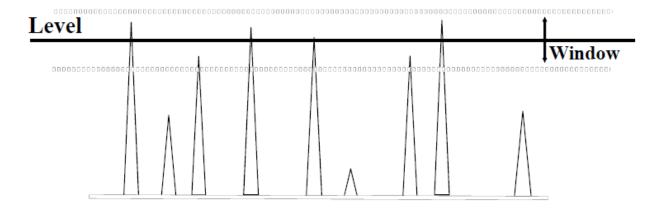

Gamma Counters in Nuclear Medicine

Prepared by James R Halama, Ph.D. Loyola University Medical Center Maywood, Illinois

1. Count Gamma Ray Emissions from Radioactive Sources


- a) The most sensitive method for measuring small amounts of radioactivity.
- b) Can measure the energy of a single photon; count only gamma rays, not scatter.
- c) The count rate is directly proportional to the activity of a radioactive source.
- d) Response must be fast enough to generate a complete signal before the next hit. Dead time $< 4 \, \mu sec.$

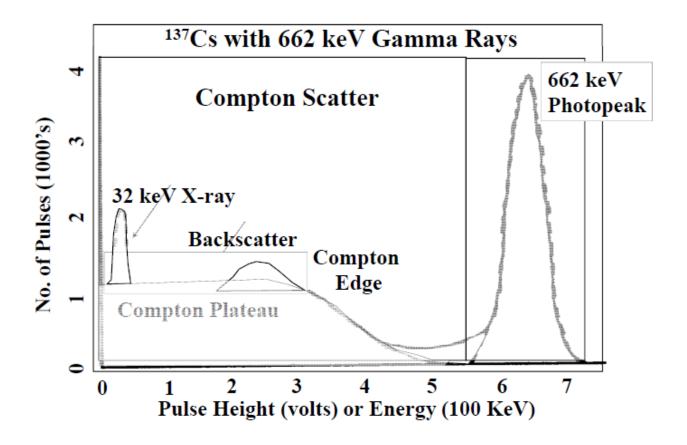
2. Gamma Counter Components



3. Gamma Detector Pulses

- a) An electric pulse is generated for every photon hit
- b) Height is proportional to the absorbed energy
- c) Tallest pulses from photoelectric absorption of gamma rays in the NaI(Tl) crystal
- d) Shorter pulses from absorption of scatter emitted from the patient, or from scattering within the crystal.

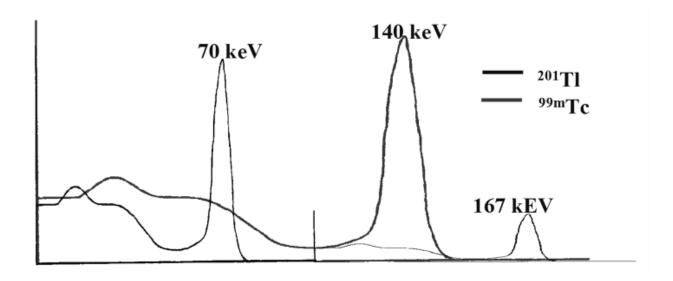
4. Pulse-Height Selector



UL - Upper Pulse-height Level

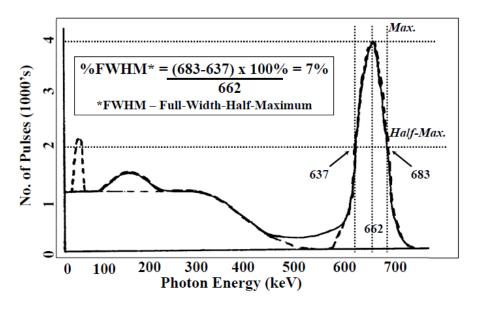
LL - Lower Pulse-height Level

W - Window = UL - LL


5. Pulse Height Histogram / Energy Spectrum

6. Energy Spectral Features

- a) **Photopeak** narrow peak associated with photoelectric absorption of γ rays.
- b) Compton Plateau broad region associated with scattering of γ rays in the patient, surroundings, and crystal.
- c) **Compton Edge** right most limit of the Compton plateau at which the γ ray backscatters in the crystal.
- d) **Backscatter Peak** associated with backscattered γ rays from the patient or surroundings.
- e) **X-ray Peak** photopeak-like structure associated with photoelectric absorption of a characteristic X-ray energy.

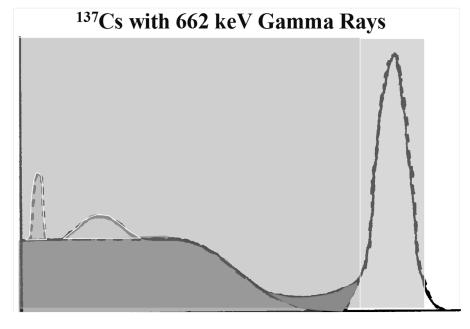

7. Identifying Radioisotopes by Locating the Photopeaks

8. Energy Resolution

- a) Ability to measure the energy of a gamma ray.
- b) Measured from the width of the photopeak at half its height (FWHM).
- c) Pulse-height variations result from variations in the fluorescent emissions from a single photon hit.

Energy Resolution Measurement

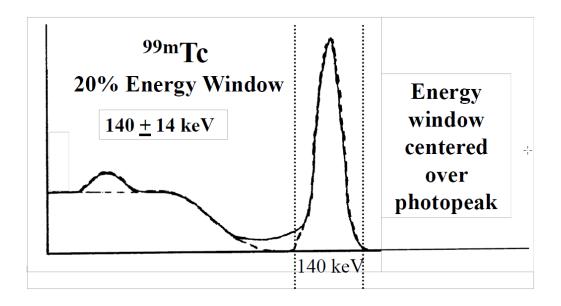
9. FWHM & Energy Resolution


- a) For NaI(Tl) scintillators, FWHM:
 - i. 7% for 662 KeV (Cs-137)
 - ii. 10% for 140 KeV (Tc-99m)
 - iii. 15% for 70 KeV (Tl -201)
- b) FWHM is a quasi-statistical measure of resolution, (e.g., measures 140 KeV gamma rays to within + 5%)

10. Energy Resolution Dependence

- a) Energy resolution is best with high intensity fluorescent emissions.
- b) Intensity of emissions depends on conversion efficiency of the gamma energy to fluorescence and the energy of the incoming photon

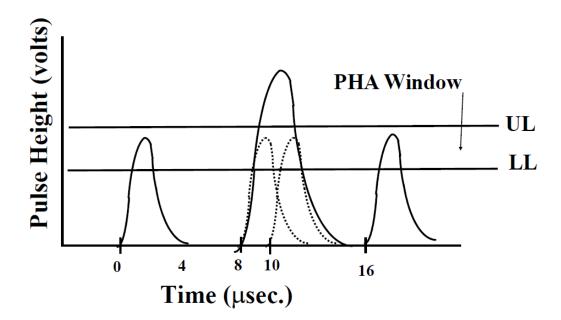
11. Energy Window & Level Selection


Set to count only events in the photopeak

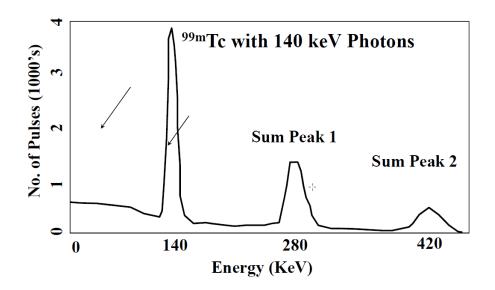
Energy Level – center of the photopeak red line)

Energy Window – % width of the Energy Level (pink region)

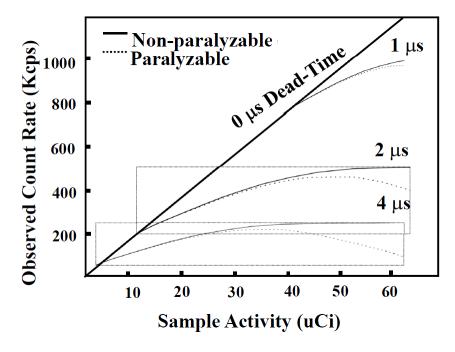
12. Peaking the Detector - Centering the Energy Level on the Peak of the Photopeak


13. Energy Level & Window Selections for Radioisotopes Commonly used in NM

Radio- nuclide	Energy #1 (keV)	Window (%)	Energy #2 (keV)	Window (%)	Energy #3 (keV)	Window (%)
²⁰¹ Tl	70	30	167	15		
¹³³ Xe	81	30				
⁵⁷ Co	122	20				
^{99m} Tc	140	20				
123 I	159	15				
⁶⁷ Ga	94	30	184	15	296	15
¹¹¹ In	173	15	247	15		
131 I	364	15				
¹⁸ F	511	15				


14. Dead Time

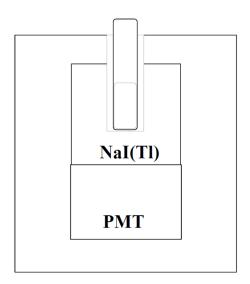
- a) Defined as time required to process a single photon hit
- b) Depends on:
 - i. the length of time light is emitted in the scintillation crystal. Crystals with a short light decay time have short dead times.
 - ii. release time of the electric pulse by the preamplifier. Can be artificially shortened, but results in lessened energy resolution.

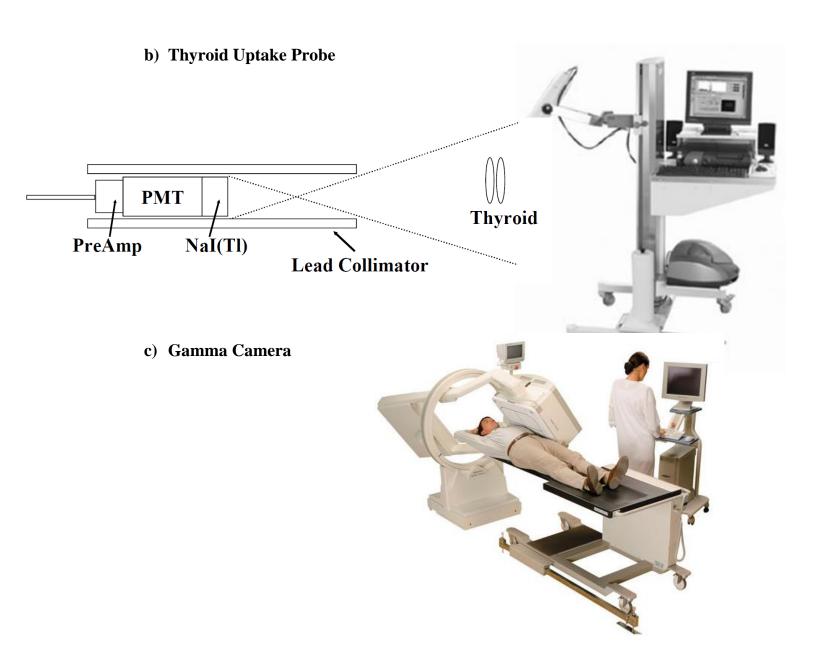

15. Pulse Pileup: Summing of pulses from multiple photon interactions

16. Sum Peaks: Simultaneous absorption of two or more γ-rays in the crystal

17. Count Losses Due to Dead Time

All Scintillation detector systems exhibit paralyzable characteristics.


Well Counter: 1 µsec.


Gamma Camera:4 µsec

18. Instruments in Nuclear Medicine that Employ Gamma Counting Detectors

a) Well Counter

- i. Contains NaI(Tl) Crystal 2" or 3" in Diameter
- ii. Contains Lead Shield 2-3" Thick
- iii. Used for Counting blood samples in in vitro tests or for counting wipe test samples
- iv. Well Counter Nearly 100%
- v. Geometric Efficiency

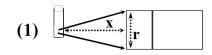
d. PET Scanner

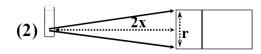
19. Gamma Counter Efficiency & Sensitivity

- a) Efficiency: Counts per disintegration
- b) Sensitivity: Counts per minute per unit of activity
- c) Counting efficiency = cpm/dpm x 100%
- d) Sensitivity may be expressed as counts per minute per Becquerel (cpm/Bq) or counts per minute per microCurie (cpm/μCi)
- e) 1 Bq = 1 dps = 60 dpm and 1 mCi = 37,000 dps = 2,220,000 dpm

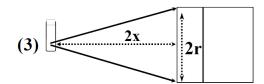
20. Factors That Affect Detector Efficiency

- a) Nuclear Decay Scheme number of gamma rays emitted per decay.
- b) **Geometric** fraction of gamma rays emitted from a radioactive source that will intersect with the detector crystal.
- c) **Intrinsic** fraction of gamma rays that intersect with the crystal that interact in the crystal.


21. Nuclear Decay Scheme


- a) E_N Number of gamma rays emitted per disintegration
- b) Tc-99m 0.9 140 Kev gamma rays emitted/disintegration (E_N =0.9)
- c) F-18 Two 511 Kev gamma rays emitted per disintegration following positron annihilation ($E_N=2.0$)

22. Geometric Efficiency: Ey - Fraction of emitted gamma rays intercepted by the detector


a) NaI(Tl) Crystal almost surrounds the source with a solid angle near 4π steradians

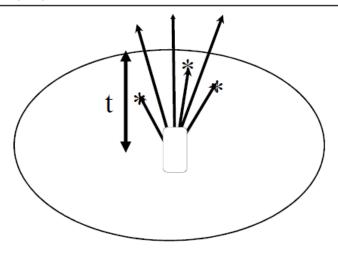
1. Decreases as inversesquare of the distance between the source and detector $(x/2x)^2$

 $2. \sim linear$ with detector 23. cross-sectional area.

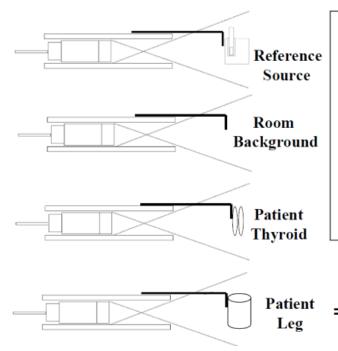
Intrinsic Efficiency

- a) Ei Fraction of γ -rays intercepted by the crystal that interact in the crystal
- b) Factors include:
 - i. Photon energy increases as photon energy decreases.
 - ii. Crystal thickness increases as crystal thickness increases.
 - iii. Crystal density increases as crystal density increases.

24. Total Efficiency


$$\mathbf{E}_{\text{Total}} = \mathbf{E}_{\mathbf{N}} * \mathbf{E}_{\mathbf{g}} * \mathbf{E}_{\mathbf{i}}$$

Scintillation Detector	Total Efficiency (E _N =1)	cps/μCi	Activites Used for Exams
Well Detector	99%	36,000	~ 1 μCi
Thyroid Uptake Probe	10%	3,600	~ 400 μCi
PET Scanner	1%	360	~10 mCi
Gamma Camera	0.01%	3-4	~ 30 mCi


25. Attenuation - Absorption Fraction

- a) E_a Fraction of emitted γ -rays absorbed by the patient.
- b) Attenuation is exponential $e^{-\mu t}$
- c) Depends on Photon energy, Source depth t, and Tissue density

NaI(Tl) detector in Gamma Camera

26. Thyroid Uptake Measurement

Day 1:

- Count 400 µCi ¹²³I patient dose to be used for Reference
- Count Room Bkg
- Patient ingests 400 μCi ¹²³I

Day 2:

- · Count Pt. Thyroid
- · Count Pt. Leg

%Uptake in 24 hrs

 $= \frac{(\text{Thyroid - Pt. Leg}) * 100\%}{(\text{Ref. - Room Bkg})*e^{-0.693t/T_{1/2}}}$